Ketamine Inhibits Lung Fluid Clearance through Reducing Alveolar Sodium Transport
نویسندگان
چکیده
Ketamine is a broadly used anaesthetic for analgosedation. Accumulating clinical evidence shows that ketamine causes pulmonary edema with unknown mechanisms. We measured the effects of ketamine on alveolar fluid clearance in human lung lobes ex vivo. Our results showed that intratracheal instillation of ketamine markedly decreased the reabsorption of 5% bovine serum albumin instillate. In the presence of amiloride (a specific ENaC blocker), fluid resolution was not further decreased, suggesting that ketamine could decrease amiloride-sensitive fraction of AFC associated with ENaC. Moreover, we measured the regulation of amiloride-sensitive currents by ketamine in A549 cells using whole-cell patch clamp mode. Our results suggested that ketamine decreased amiloride-sensitive Na+ currents (ENaC activity) in a dose-dependent fashion. These data demonstrate that reduction in lung ENaC activity and lung fluid clearance following administration of ketamine may be the crucial step of the pathogenesis of resultant pulmonary edema.
منابع مشابه
Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model
We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (i.v.) bolus injection had no effect. The aim of the present study was to characterize whether continuous i.v. infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI)...
متن کاملAlveolar epithelial fluid transport in acute lung injury: new insights.
Pulmonary oedema is a life-threatening condition that frequently leads to acute respiratory failure. From a physiological perspective, pulmonary oedema develops either because of an increase in lung vascular hydrostatic pressure or an increase in lung vascular permeability. Resolution of alveolar oedema depends on the active removal of salt and water from the distal air spaces of the lung acros...
متن کاملAlcohol Worsens Acute Lung Injury by Inhibiting Alveolar Sodium Transport through the Adenosine A1 Receptor
OBJECTIVE Alcohol intake increases the risk of acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) and is associated with poor outcomes in patients who develop these syndromes. No specific therapies are currently available to treat or decrease the risk of ARDS in patients with alcoholism. We have recently shown increased levels of lung adenosine inhibit alveolar fluid cle...
متن کاملENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated m...
متن کاملTransforming growth factor-beta1 decreases expression of the epithelial sodium channel alphaENaC and alveolar epithelial vectorial sodium and fluid transport via an ERK1/2-dependent mechanism.
Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-beta1 (TGF-beta1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011